

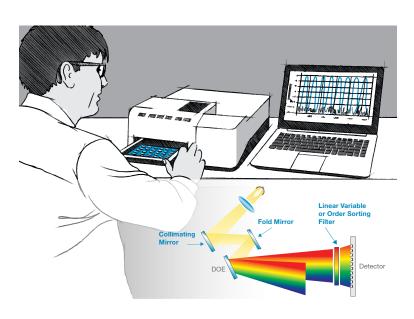
// BALZERS OPTICS

High Precision Order Sorting Filters

High-order suppression in grating-based optical systems

Grating-based optical instruments play a crucial role in a vast range of optical systems. However, the use of diffraction gratings introduces higher diffraction orders that must be addressed. One method to suppress these orders is through a strategic placement of several longpass filters. These filters must have a highly transmitting passband, along with an efficient suppression in the blocking band. Using photolithography, multiple filters with a transition zone of less than 10 μm can be patterned on a single substrate. Additionally, linear variable filters are available for integration into high-end spectrometers. On request, all order sorting filters may be combined with the renowned Gelot $^{\rm TM}$ coating for hermitically sealing the detector.

Benefits


- Customized filter size and design
- Entirely coated, patterned or linear variable filters
- High transmittance in the passband
- Long-term shift-free spectral performance
- Extreme environmental stability
- Compact and cost-effective configuration
- Enables instrument designs with no moving parts for fastest data acquisition

Applications

- «Grating-based» optical devices, e.g. miniature spectrometers
- Sensing, metrology, astronomy

Technical Data

Wavelength	available from UV to NIR range
(e.g. 26	60 nm, 380 nm, 605 nm, 900 nm)
or as a continuously variable version (LVF)	
Blocking	OD3 – OD8
Transmittance	Tave > 95 %
	(depending on wavelenght range)
Dimensions	per customer request
Parallelism	< 3 arcmin
Surface Defects	e.g. 5 / 1 x 0.1 per ISO 10110-7
	or 20-10 per ML-PRF-13830B
Environmental Stability	Temperature - 100 + 150 °C
	Humidity up to 99%
Transition zone	< 10 μm (conventional OSF)
	None (Linear variable Filter)

Optics Balzers Jena GmbH Otto-Eppenstein-Strasse 2 07745 Jena

Deutschland T +49 3641 3529 30 F +49 3641 3529 35 info.mbo@materion.com www.materionbalzersoptics.com

MJO 016 PE (2407-1)

// BALZERS OPTICS

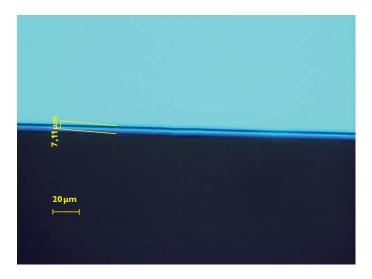


Fig. 1: Using a lithographic approach, a transition region $\,$ $< 10\,\mu m$ can be achieved between different zones.

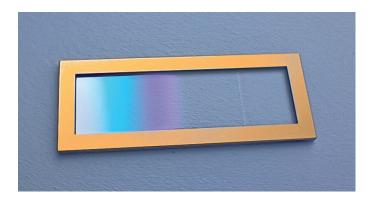


Fig. 2: On request, all filters may be combined with our solderable ${\sf Gelot}^{\sf TM}$ coating for hermetically sealing the detector.

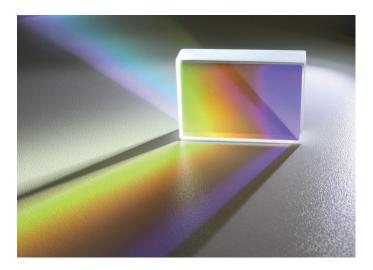


Fig.3: Using a linear variable filter (LVF) instead of a traditional multi-zone filter allows to get rid of all transition regions as the spectral performance varies continuously depending on the lateral position on the filter.

Optics Balzers Jena GmbH Otto-Eppenstein-Strasse 2 07745 Jena

Deutschland T +49 3641 3529 30 F +49 3641 3529 35 info.mbo@materion.com www.materionbalzersoptics.com

Highly transmitting Order Sorting Filter with borad transmission band

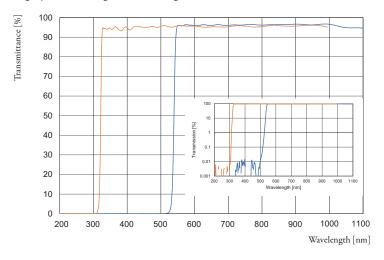


Fig. 4: Measured spectral transmittance of a VIS-Order Sorting Filter with broad transmission bands. Inset: the blocking power is OD4.

High Precision Longpass Filter for IR application

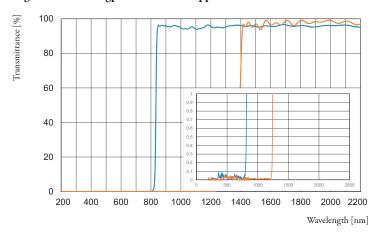


Fig. 5: Measured spectral transmittance of a NIR-Order Sorting Filter.
Inset: blocking performance.

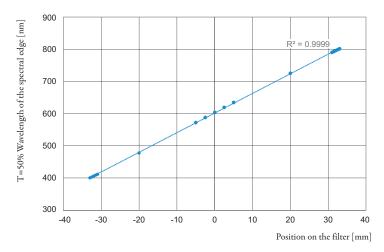


Fig. 6: The spectral performance of an LVF depends linearly on the measurement position.

Optics Balzers Jena GmbH Otto-Eppenstein-Strasse 2 07745 Jena

Deutschland T +49 3641 3529 30 F +49 3641 3529 35 info.mbo@materion.com www.materionbalzersoptics.com